
MOF and XMI
(version 2.0)

by Philippe Nguyen
March 24, 2005

What should you get from this?

• A clear understanding of:

– The “big picture” of the MOF 2.0 and XMI 2.0

– The motivation behind each standard and the role
that they play

– Some important details about each specific standard

Topics Overview
• Introduction

– Overview of Metamodeling
– Key Acronyms and Standards

• MOF Details
– Goals
– MOF/UML Relation
– Capabilities
– EMOF
– CMOF
– Abstract Semantics

• XMI Details
– Motivation and Goals
– XMI Model
– Schema and Document Production from MOF

• Conclusion

Topics Overview
• Introduction

– Overview of Metamodeling
– Key Acronyms and Standards

• MOF Details
– Goals
– MOF/UML Relation
– Capabilities
– EMOF
– CMOF
– Abstract Semantics

• XMI Details
– Motivation and Goals
– XMI Model
– Schema and Document Production from MOF

• Conclusion

The Four Level Metamodel
Hierarchy

M3
(Meta-metamodel)

- Defines a language for specifying a metamodel
- Example: MOF
- Typically more compact than the metamodel it describes
- Can define many metamodels

M2
(Metamodel)

- Defines a language for specifying models
- Example: UML, CWM
- Is an instance of a meta-metamodel (every element of the

metamodel is an instance of an element of the meta-metamodel)

M1
(Model)

- Defines a language that describe semantic domains
- Example: model of different problem domains such as software,

business, processes, and requirements
- Is an instance of a metamodel
- The things that are modeled reside outside the metamodel hierarchy
- The user model contains both model elements and snapshots

of instances of these model elements

M0
(Instance)

- Contains run-time instances of the model elements defined in a model
- The snapshots modeled at the M1 layer are constrained versions of the

M0 run-time instances

The Four Level Metamodel
Hierarchy (cont’d)

• Key metamodeling concepts:
– Classifiers/Classes Instances/Objects

• A metamodeling facility must give the
ability to navigate from an instance to its
metaobject

Topics Overview
• Introduction

– Overview of Metamodeling
– Key Acronyms and Standards

• MOF Details
– Goals
– MOF/UML Relation
– Capabilities
– EMOF
– CMOF
– Abstract Semantics

• XMI Details
– Motivation and Goals
– XMI Model
– Schema and Document Production from MOF

• Conclusion

Links

• UML 2.0 Infrastructure Specification:
http://www.omg.org/docs/ptc/03-09-15.pdf

• MOF 2.0 Core Specification:
http://www.omg.org/docs/ptc/03-10-04.pdf

• MOF 2.0 XMI Specification:
http://www.omg.org/docs/ptc/03-11-04.pdf

http://www.omg.org/docs/ptc/03-09-15.pdf
http://www.omg.org/docs/ptc/03-10-04.pdf
http://www.omg.org/docs/ptc/03-11-04.pdf

UML
• The Unified Modeling Language

• Upcoming version is 2.0

• OMG standard providing:
– A framework for specifying, constructing and documenting

system artifacts
– A general-purpose visual modeling language

• Collection of modeling formalisms
– Most frequently used in Object-Oriented systems is the

Class Diagram

• Specification includes Infrastructure and Superstructure

UML Infrastructure

• Defines basic and more complex modeling constructs that
underlie the entire UML architecture
– Architectural kernel

• Defined by the InfrastructureLibrary package

• Basic concept:
– MOF (EMOF + CMOF) is built upon the merges of certain

subpackages defined in InfrastructureLibrary

MOF
• The Metadata Object Facility

• Upcoming version is 2.0

• OMG standard that provides a metadata management
framework
– Create, destroy, find, manipulate, and change objects and

relationships between those objects as prescribed by
metamodels

• Is to be used as the platform-independent metadata
management facility for OMG’s Model Driven
Architecture (MDA)
– i.e. build PIMs that are to be transformed to PSMs

• Specification includes the EMOF and the CMOF

EMOF

• The Essential MOF

• “Minimal” subset of the MOF
– Allows simple metamodels to be defined, using the most basic

class diagram concepts

• Serves as a first stepping stone to model driven tool
development and tool integration
– E.g. Eclipse’s EMF is based on Ecore

CMOF

• The Complete MOF

• Used to specify metamodels such as the UML

• Adds more complex constructs to the EMOF

XMI

• The XML Metadata Interchange

• OMG standard for serializing MOF-based models to XML
format

• Allows tools to exchange model information seamlessly

Topics Overview
• Introduction

– Overview of Metamodeling
– Key Acronyms and Standards

• MOF Details
– Goals
– MOF/UML Relation
– Capabilities
– EMOF
– CMOF
– Abstract Semantics

• XMI Details
– Motivation and Goals
– XMI Model
– Schema and Document Production from MOF

• Conclusion

Goals (1)

• Easier to define and extend models and metamodels
– Unifying MOF2 and UML2 under a common core should

help accomplish this

• Modular and hierarchical models (component-based
modeling)
– Model packages can be imported by other models

• Platform-independence of MOF
– Interoperability of different tools using XMI

Goals (2)

• Integrate fundamental capabilities directly inside the
MOF
– Model Reflection in MOF as an independent service
– Model Identity to improve interoperability
– Model Extension to allow annotation of models

• As a result, we have:
– Orthogonality between the capabilities and the technology

• E.g. Reflection is not specific to CORBA
– A top-down definition of the capabilities

• All MOF-based metamodels will inherently possess all capabilities
– MOF capabilities that can be reused at different meta-

layers

Topics Overview
• Introduction

– Overview of Metamodeling
– Key Acronyms and Standards

• MOF Details
– Goals
– MOF/UML Relation
– Capabilities
– EMOF
– CMOF
– Abstract Semantics

• XMI Details
– Motivation and Goals
– XMI Model
– Schema and Document Production from MOF

• Conclusion

MOF/UML Relation

• We will look at two aspects of the relation:

1. Roles of UML Infrastructure

2. Differences between MOF and UML

Roles of UML Infrastructure

• Defined by InfrastructureLibrary

• The design of UML Infrastructure into fine-grained
packages facilitates the definition of the rest of UML

Core:
contains core
concepts used
when meta-
modeling (e.g.
classes)

Profiles:
defines the
mechanisms that
are used to
customize
metamodels
(e.g. stereotypes)

UML InfrastructureLibrary::Core
PrimitiveTypes:
contains a few
predefined types that
are commonly used
when metamodeling

Abstractions:
mostly contains
abstract metaclasses
that are intended to be
further specialized or
that are expected to be
commonly reused by
many metamodels

Basic:
provides a minimal
class-based modeling
language on top of
which more complex
languages can be
built. It is intended for
reuse by the EMOF

Constructs:
mostly contains
concrete metaclasses
that lend themselves
primarily to object-
oriented modeling. It is
intended for reuse by
the CMOF

Example: Core::Basic::Types

Element

TypeTypedElement +type
0..10..1

NamedElement
name : String [0..1]

UML InfrastructureLibrary::Core
(cont’d)

• A complete metamodel
– Designed for high reusability
– Metamodels at the same metalevel either import or

specialize its metaclasses

• InfrastructureLibrary::Core is reused by MOF, UML
Superstructure (Kernel package), and UML Infrastructure

• The goal is to reuse
the same core
modeling concepts
between UML, MOF
and other emerging
OMG metamodels

Differences between MOF and UML

• MOF
– Provides the metadata services
– Defines the meta-metamodeling language to define other

metamodels like UML
• M3 level: needs to be simpler than UML

– Defines a model interchange standard (XMI)

• UML
– Provides the modeling (and metamodeling) notation

• M2 and M1 levels: model elements have added annotations
– General-purpose modeling language

• Potentially many target application domains

The Big Picture…
• MOF 2.0 was built on reusing

the Core package by the
merge, and combine
mechanisms

• The advantages are
threefold:

– Simpler rules for modeling
metadata, since we only need to
learn a subset of UML class
diagrams, and no additional
constructs

– Various technology mapping
from MOF (e.g. XMI, JMI) now
apply to a broader range of UML
models, such as UML Profiles

– Broader tool support for
metamodeling, since any UML
modeling tool could be also used
as a metamodeling tool

Topics Overview
• Introduction

– Overview of Metamodeling
– Key Acronyms and Standards

• MOF Details
– Goals
– MOF/UML Relation
– Capabilities
– EMOF
– CMOF
– Abstract Semantics

• XMI Details
– Motivation and Goals
– XMI Model
– Schema and Document Production from MOF

• Conclusion

MOF Capabilities

• The MOF specifies three capabilities that add-on to the
modeling constructs from UML Infrastructure:
– Reflection: Allows discovery and manipulation of

metaobjects and metadata
– Identifiers: Unambiguously distinguishes objects from each

other
– Extension: Allows dynamic annotation of model elements

with additional information

• Each capability is encapsulated in a separate package
– Technology independent

• Any MOF-based metamodels will possess the capabilities
– Can be imported (merged) into other metamodels

Reflection
• The Object Class

– Holds the reflective
interface

– Rationale: used in the
production of EMOF,
which can then be
merged into CMOF to
provide reflective
capabilities to MOF and
all instances of MOF

• Having both MOF and
MOF instances be rooted
in class Object, MOF
supports any number of
metalayers

Element

Object

getMetaClass() : Class
container() : Object
equals(element : Element) : Boolean
get(property : Property) : Element
set(property : Property, element : Element)
isSet(property : Property) : Boolean
unset(property : Property)

NamedElement
name : String [0..1]

Package
uri : String

Factory

createFromString(dataType : DataType, st ring : String) : Element
convertToString(dataType : DataType, element : Element) : String
create(metaClass : Class) : Objec t

+package

0..n

1

0..n

1

Identifiers
Element

Extent

useContainment() : Boolean
objects() : Reflect iveSequence

URIExtent

contextURI() : String
uri(object : Object) : String
object(string : String) : Object

Property
isReadOnly : Boolean = False
default : String
isCompos ite : Boolean = False
isDerived : Boolean = False
isID : Boolean

Package
uri : String

• Applications:
– Coordinate model updates
– Object communication in user

interfaces
– In XMI, object identity can simplify

referencing to external objects
– In MDA, identity is crucial for model

(graph) transformations, in order to
correlate elements from source and
target models

Extension

• Allows dynamic annotation
of model elements with
additional, and perhaps
unanticipated, information

• Provides a simple
mechanism to associate a
collection of name-value
pairs with model elements

Object

getMetaClass() : Class
container() : Object
equals(element : Element) : Boolean
get(property : Property) : Element
set(property : Property , element : Element)
isSet(property : Property) : Boolean
unset(property : Property)

Element

Tag
name : String
value : String

+element
0..n0..n

Topics Overview
• Introduction

– Overview of Metamodeling
– Key Acronyms and Standards

• MOF Details
– Goals
– MOF/UML Relation
– Capabilities
– EMOF
– CMOF
– Abstract Semantics

• XMI Details
– Motivation and Goals
– XMI Model
– Schema and Document Production from MOF

• Conclusion

EMOF
• Purposes:

– Provides the minimal set of elements required to model
object-oriented systems

– Allows simple metamodels to be defined, using the most
basic class diagram concepts

– Gives a fixed modeling base in order to keep the mapping
from MOF/UML to XML stable

– Provides a straightforward framework for mapping MOF
models to implementations such as JMI and XMI for
simple metamodels

– Lowers the barrier to entry for model driven tool
development and tool integration

EMOF Definition
• EMOF = combine(Basic, Reflection, Identifiers, Extension)

• We would like EMOF to simply extend Core::Basic
– But, Reflection has to introduce Object in the class hierarchy

between Basic::Element and Basic::NamedElement
– So, we need CMOF’s <<combine>> mechanism

• Described in CMOF
– But, in order for it to be a usable standalone package, it is

also specified in itself by removing all redefinitions and
merges

• using the CMOF’s <<combine>> mechanism

• Reason for specifying EMOF as a complete merged model:
– Provide a metamodel that can be used to bootstrap

metamodel tools rooted in EMOF without requiring an
implementation of CMOF and package merge semantics

EMOF Definition (cont’d)

NamedElement
name : String [0..1]

MultiplicityElement
isOrdered : Boolean = False
isUnique : Boolean = True
lower : Integer
upper : UnlimitedNatural

UnlimitedNatural
<<primitive>>

Object

getMetaClass() : Class
container() : Object
equals(element : Element) : Boolean
get(property : Property) : Element
set(property : Property, element : Element)
isSet(property : Property) : Boolean
unset(property : Property)

Boolean
<<primitive>>

String
<<primitive>>

Integer
<<primitive>>

DataType

Primitiv eTy pe

Extent

useContainment()
objects()

URIExtent

contextURI() : Stri ng
uri(object : Object) : String
obj ect(string : Stri ng) : Object

Ref lectiv eCollection

add(element : Element) : Boolean
addAll(elements : ReflectiveSequence) : Boolean
clear()
remove(element : Element) : Boolean
size() : Integer

Ref lectiv eSequence

add(index : Integer, element : Element)
get(index : Integer) : Element
remove(index : Integer) : Element
set(index : Integer, element : Element) : Element

EnumerationLiteral Enumeration

0..n 0..1
+ownedLiteral

0..n
+enumeration

0..1

Propert y
isReadOnly : Boolean = False
default : String
isComposite : Boolean = False
isDerived : Boolean = False
isID : Boolean

0..1

1

+opposite
0..1

1

Parameter

Class
isAbstract : Boolean = False 0..n

+superClass
0..n

0..n

0..1

+ownedProperty 0..n

+c lass
0..1

TypedElement

Operation 0..n
+ownedParameter

0..n+operation

0..n

0..1

+ownedOperation
0..n

+class
0..1

Type 0..1 +ty pe0..1

0..n

0..n

+raisedException
0..n

0..n

Package
uri : String 0..n0..1

+ownedTy pe
0..n

+package
0..1

0..n

0..1

+nestedPackage
0..n

+nestingPackage
0..1

Factory

createFromString(dataType : DataType, string : String) : Element
convertToString(dataType : DataType, element : Element) : String
create(metaClass : Class) : Object

1

0..n
+package

1

0..n

Element

Tag
name : Stri ng
value : String

0..n
+element

0..n

Topics Overview
• Introduction

– Overview of Metamodeling
– Key Acronyms and Standards

• MOF Details
– Goals
– MOF/UML Relation
– Capabilities
– EMOF
– CMOF
– Abstract Semantics

• XMI Details
– Motivation and Goals
– XMI Model
– Schema and Document Production from MOF

• Conclusion

CMOF
• Purposes:

– Completely define the UML 2.0
– Define package extending mechanisms

• Package import
– model elements contained in the imported package are made

visible in the importing package
• Package merge

– classes in the merging package specialize similarly named
classes in the merged package adding new features

• Package combine
– a new package consisting of the model elements of the combined

and combining packages is defined

– These mechanisms are used throughout the MOF and
the UML to define metamodels

• E.g. EMOF = combine(Basic, Reflection, Identifiers,
Extension)

CMOF Definition

• CMOF = merge(Constructs, EMOF, CMOFExtension,
CMOFReflection)

• Constructs
– Similar to Basic
– More complex constructs, e.g. support of user-defined

DataType with attributes and operations

• CMOFExtension

• CMOFReflection
– Extension to Factory to conform to the XMI 2.0

specification

Element
Tag

name : String
value : String

+element +tag
0..n0..n 0..n0..n

CMOF Definition (cont’d)

• Classes Diagram
– Association and Class are both Classifiers

• Novelty: Associations can be generalized
– Classes own Properties and Operations
– Associations relate Properties of Classes

Classifier
isAbstract : Boolean = False

0..n

+general

0..n

Class

0..n

+superClass

0..n

Operat ion
isQuery : Boolean = False

0. .1
0..n

+c lass0. .1

+ownedOperation
0..n

Property
default : String
isComposite : Boolean = False
isDerived : Boolean = False
isID : Boolean
isDerivedUnion : Boolean = False

0..1

0..n

+c lass

0..1

+ownedAt tribute0..n

0..1 0..n
+classifier
0..1

+attribute
0..n

Association
isDerived : Boolean = False

0..1

2..n

+association
0..1

+memberEnd
2..n

+ownedEnd

+owningAssociation
0..1

0..n

0..1

0..n

CMOF Definition (cont’d)

• Constraints Diagram
– Constraints apply to Elements in a certain context

(Namespace)
– The constraint specification is a ValueSpecification

• A ValueSpecification identifies values in a model
• Can be an Expression (e.g. a + b = 3)
• Can be an OpaqueExpression (e.g. an OCL statement)

PackageableElement

Namespace

+importedMember
0..n0..n

Element
0..n

0..1
0..n

+ownedElement

0..1

+owner

ValueSpecification

Constraint
0..1

+context
0..1

0..1 0..n+namespace 0..1
+ownedRule

0..n

0..n
+constrainedElement

0..n

+specification

0..1

1

0..1

1

CMOF Definition (cont’d)

• Packages Diagram
– PackageMerge is a DirectionalRelationship between two

Packages
• “extend” Package Merge
• “define” Package Combine

PackageableElementNamespace

Type

PackageMergeKind
extend
define

<<enumeration>>

Package
uri : String

0..n

0..1

+nestedPackage
0..n

+nestingPackage
0..1

0..1

0..n

+owningPackage
0..1

+ownedMember
0..n

0..1

0..n

+package
0..1

+ownedType
0..n

PackageMerge
mergeType : PackageMergeKind

1

0..n

+mergingPackage
1

+packageMerge
0..n

+mergedPackage
11

DirectedRelationship

Package Merge
• Set of transformations where the elements of the merged

package are expanded in the merging package

• General idea:
– Model elements match by name
– Matching elements are merged together using inheritance

and redefinitions
– Done until there are no more duplicate elements

• At the end of the transformations, the package merge
relationship is transformed into a package import
relationship, with the same source and target packages
– The relationship is maintained

Package Merge Example

Package Combine
• Set of transformations where the elements of the

combined package are “deeply” copied in the combining
package

• General idea:
– Packages, Classes, Properties match by name
– Associations match either by name (if any) or by

memberEnds
– Operations match by name and parameters
– New model elements are born from the combination of

matching elements from the combined and combining
packages

• At the end of the transformations, the package
dependency is removed from the model

Package Combine (cont’d)
• Deep copy:

– Copy non-matching elements to the combining package

– Matching packages: combine their classes and
associations

– Matching classes: combine their properties and ignore
matching operations

– Matching properties: find the most specific type and
multiplicity

• Most specific type: the “closest” supertype of both properties, in the
combining package

• Most specific multiplicity: largest lower bound and smallest lower
bound

– Matching association: combine the related classes

MOF Recap

• The MOF (EMOF + CMOF) is
described using UML Infrastructure
(+ OCL and natural language)

• The EMOF is described using
CMOF

• The EMOF is also completely
described in EMOF, using CMOF’s
combine mechanism

• The CMOF is described using
CMOF itself

• The UML2 uses CMOF in its
definition

Topics Overview
• Introduction

– Overview of Metamodeling
– Key Acronyms and Standards

• MOF Details
– Goals
– MOF/UML Relation
– Capabilities
– EMOF
– CMOF
– Abstract Semantics

• XMI Details
– Motivation and Goals
– XMI Model
– Schema and Document Production from MOF

• Conclusion

Abstract Semantics

• Instances Diagram
– InstanceSpecification represents an instance in a modeled

system
• References a Classifier its “metaobject”
• An InstanceValue specifies the value modeled by an InstanceSpecification
• Has Slots, which specify the value or values for its defining feature, which

must be a StructuralFeature of the classifier referenced by the
InstanceSpecification owning the Slot

InstanceValue

NamedElement

Classifier InstanceSpecification

1 +instance1
1..n

+classifier
1..n

ValueSpecification0..1

0..1

0..1 +specification
0..1

Slot

1

0..n

+owningInstance1

+slot0..n

0..1

0..n

0..1

+value 0..n

StructuralFeature
1

+definingFeature
1

Topics Overview
• Introduction

– Overview of Metamodeling
– Key Acronyms and Standards

• MOF Details
– Goals
– MOF/UML Relation
– Capabilities
– EMOF
– CMOF
– Abstract Semantics

• XMI Details
– Motivation and Goals
– XMI Model
– Schema and Document Production from MOF

• Conclusion

Motivation and Goals
• Define an industry standard for MOF/UML model

serialization

• Allow tools to
– Exchange model information seamlessly
– Include tool-specific information without affecting the model

representation
– Transmit incomplete metadata, and metadata deltas

• Define production rules for XML Schemas and Documents
– Schema: validates an XML document, i.e. the metamodel
– Document: contains actual model information, i.e. the model
– Backward rules are also defined, but not discussed here!

• Difference from MOF 1.4 XMI:
– Use of XML Schemas instead of DTDs

XMI Definition
• Two important aspects come into play in the definition of

XMI standard:
– The XMI Model
– The Production rules

• XMI Model = Instance of MOF
– Used to describe XMI-specific information

• i.e. version, documentation, extension, differences
– XMI can be treated like any other MOF metadata

• Production rules specify as formally as possible the
manner in which MOF-based models should be
transformed into both XML Schemas and Documents

Topics Overview
• Introduction

– Overview of Metamodeling
– Key Acronyms and Standards

• MOF Details
– Goals
– MOF/UML Relation
– Capabilities
– EMOF
– CMOF
– Abstract Semantics

• XMI Details
– Motivation and Goals
– XMI Model
– Schema and Document Production from MOF

• Conclusion

XMI Model
XMI

version : String
documentation : Documentation
difference : Difference
extens ion : Extension

Documentation
contact : String
exporter : String
exporterVersion : String
exporterID : String
longDescription : String
shortDescript ion : String
notice : String
owner : String

Extension
extender : String
extenderID : String

DeleteAdd
position : Integer

Replace
position : Integer

Difference
0..n

0..1

+difference
0..n

+container
0..1

Object
0..n

+addition
0..n

0..n

+replacement

0..n
0..n+target 0..n

XMI Attributes
• XMI defines a set of fixed XML attributes used throughout the production

of XMI schemas

• Consistent attributes consistent architectural structure consistent
object identity and linking across all assets

• Example: Element Identity Attribute & Linking Attributes

<xsd:attribute name="id" type="xsd:ID" use="optional"/>
<xsd:attributeGroup name="IdentityAttribs">

<xsd:attribute name="label" type="xsd:string" use="optional" form="qualified"/>
<xsd:attribute name="uuid" type="xsd:string" use="optional" form="qualified"/>

</xsd:attributeGroup>

<xsd:attributeGroup name="LinkAttribs">
<xsd:attribute name="href" type="xsd:string" use="optional"/>
<xsd:attribute name="idref" type="xsd:IDREF" use="optional“ form="qualified"/>

</xsd:attributeGroup>

Topics Overview
• Introduction

– Overview of Metamodeling
– Key Acronyms and Standards

• MOF Details
– Goals
– MOF/UML Relation
– Capabilities
– EMOF
– CMOF
– Abstract Semantics

• XMI Details
– Motivation and Goals
– XMI Model
– Schema and Document Production from MOF

• Conclusion

Schema Production from MOF

• Set of rules that show
– What declarations must be contained in any well-formed

XMI Schema (content)
– How the information is structured (structure)

• Mapping between any type of MOF model element and a
schema declaration
– E.g. a class maps to a complexType declaration
– E.g. multiplicities map to minOccurs and maxOccurs

indicators

• Formalized using a textual grammar
– Extended BNF (EBNF)

EBNF Snippet
…
4.b ClassContents ::= 4d:ClassAttributes

4e:ClassReferences
4f:ClassCompositions
4c:Extension

4c. Extension ::= ("<xsd:element ref=’xmi:extension’/>")*

4d. ClassAttributes ::= ("<xsd:element name=’" //Name of Attribute// "’“ ("nillable=’true’")?
(4m:MinOccursAttrib)? (4n:MaxOccursAttrib)?
(("type=’" //Name of type// "’/>") | ("type='xmi:Any'/>")))*

4e. ClassReferences ::= ("<xsd:element name=’" //Name of Reference// "’"
(4m:MinOccursAttrib)? (4n:MaxOccursAttrib)?
(("type=’" 4a:ClassTypeName "’/>") | ("type='xmi:Any'/>")))*

4f. ClassCompositions ::= ("<xsd:element name=’" //Name of Reference// "’"
(4m:MinOccursAttrib)? (4n:MaxOccursAttrib)?
(("type=’" 4a:ClassTypeName "’/>") | ("type='xmi:Any'/>")))*

…
4m. MinOccursAttrib ::= "minOccurs=’" // Minimum // "’"
4n. MaxOccursAttrib ::= "maxOccurs=’" // Maximum // "’“
…

Overview of Model Representation

GIS Model Example
(from MOF XMI spec)

Document Production from MOF
• Similar to Schema production rules

– Also in EBNF
– But less fixed declarations (i.e. namespaces)

• Defines a serialization model:

EBNF Snippet
2:XMIElement ::= 2a:XMIObjectElement | 2b:XMIValueElement | 2c:XMIReferenceElement

2a:XMIObjectElement ::= ("<" 2k:QName 2d:XMIAttributes "/>") |
("<" 2k:QName 2d:XMIAttributes ">" (2:XMIElement)* "</" 2k:QName ">")

2b:XMIValueElement ::= ("<" xmiName ">" value "</" xmiName ">") | ("<" xmiName "nil='true'/>")

2c:XMIReferenceElement::= "<" xmiName (2g:TypeAttrib)? 2l:LinkAttribs "/>"

2d:XMIAttributes ::= (1c:StartAttribs)? (2e:IdentityAttribs)? (2g:TypeAttrib)? (2hFeatureAttrib)*

2e:IdentityAttribs ::= (2f:IdAttribName "=’" id "’")? (xmiPrefix "label=’" label "’")? (xmiPrefix "uuid=’" uuid "’")?

2f:IdAttribName ::= xmiPrefix "id" | xmiIdAttribName

2g:TypeAttrib ::= (1b:XMINamespace | 1g:Namespace) "type=’" 2k:QName "’"

2h:FeatureAttrib ::= 2i:XMIValueAttribute | 2j:XMIReferenceAttribute

2i:XMIValueAttribute ::= xmiName "=’" value "’"

2j:XMIReferenceAttribute ::= xmiName "=’" (refId | 2n:URIref)+ "’“

2l:LinkAttribs ::= 1b:XMINamespace "idref=’" refId "’“ | 2m:Link

2m:Link ::= "href='" 2n:URIref "'"

Document Production Example

• Composite property serialized as XML elements, the
opposite property is not serialized.

Conclusion
• UML is a general-purpose modeling notation with a

plethora of application domains

• UML InfrastructureLibrary defines small subpackages
that can be reused by UML and MOF (EMOF + CMOF)

• MOF is a metamodeling framework that provides
reflection, identity, and extension services

• EMOF is a minimal subset of MOF used to define very
simple metamodels

• CMOF is the complete meta-metamodel used to define
UML2 completely

• XMI is the OMG standard for serializing MOF-based
models

References
• Object Management Group, UML 2.0 Infrastructure Final

Adopted Specifcation, Available Online, URL:
http://www.omg.org/docs/ptc/03-09-15.pdf,
September 2003

• Object Management Group, MOF 2.0 Core Final
Adopted Specification , Available Online, URL:
http://www.omg.org/docs/ptc/03-10-04.pdf,
October 2003

• Object Management Group, MOF-XMI Final Adopted
Specification, Available Online, URL:
http://www.omg.org/docs/ptc/03-11-04.pdf,
November 2003

• For more information about issues of the standard
specifications, see http://www.omg.org/issues

http://www.omg.org/docs/ptc/03-09-15.pdf
http://www.omg.org/docs/ptc/03-10-04.pdf
http://www.omg.org/docs/ptc/03-11-04.pdf
http://www.omg.org/issues

	MOF and XMI�(version 2.0)
	What should you get from this?
	Topics Overview
	Topics Overview
	The Four Level Metamodel Hierarchy
	The Four Level Metamodel Hierarchy (cont’d)
	Topics Overview
	Links
	UML
	UML Infrastructure
	MOF
	EMOF
	CMOF
	XMI
	Topics Overview
	Goals (1)
	Goals (2)
	Topics Overview
	MOF/UML Relation
	Roles of UML Infrastructure
	UML InfrastructureLibrary::Core
	Example: Core::Basic::Types
	UML InfrastructureLibrary::Core (cont’d)
	Differences between MOF and UML
	The Big Picture…
	Topics Overview
	MOF Capabilities
	Reflection
	Identifiers
	Extension
	Topics Overview
	EMOF
	EMOF Definition
	EMOF Definition (cont’d)
	Topics Overview
	CMOF
	CMOF Definition
	CMOF Definition (cont’d)
	CMOF Definition (cont’d)
	CMOF Definition (cont’d)
	Package Merge
	Package Merge Example
	Package Combine
	Package Combine (cont’d)
	MOF Recap
	Topics Overview
	Abstract Semantics
	Topics Overview
	Motivation and Goals
	XMI Definition
	Topics Overview
	XMI Model
	XMI Attributes
	Topics Overview
	Schema Production from MOF
	EBNF Snippet
	Overview of Model Representation
	Document Production from MOF
	EBNF Snippet
	Document Production Example
	Conclusion
	References

