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What should you get from this?

• A clear understanding of:

– The “big picture” of the MOF 2.0 and XMI 2.0

– The motivation behind each standard and the role 
that they play

– Some important details about each specific standard



Topics Overview
• Introduction

– Overview of Metamodeling
– Key Acronyms and Standards

• MOF Details
– Goals
– MOF/UML Relation
– Capabilities
– EMOF
– CMOF
– Abstract Semantics

• XMI Details
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– XMI Model
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The Four Level Metamodel 
Hierarchy

M3
(Meta-metamodel) 

- Defines a language for specifying a metamodel
- Example: MOF
- Typically more compact than the metamodel it describes
- Can define many metamodels

M2
(Metamodel) 

- Defines a language for specifying models
- Example: UML, CWM
- Is an instance of a meta-metamodel (every element of the 

metamodel is an instance of an element of the meta-metamodel) 

M1
(Model) 

- Defines a language that describe semantic domains
- Example: model of different problem domains such as software, 

business, processes, and requirements
- Is an instance of a metamodel
- The things that are modeled reside outside the metamodel hierarchy
- The user model contains both model elements and snapshots 

of instances of these model elements 

M0
(Instance) 

- Contains run-time instances of the model elements defined in a model
- The snapshots modeled at the M1 layer are constrained versions of the 

M0 run-time instances 



The Four Level Metamodel 
Hierarchy (cont’d)

• Key metamodeling concepts:
– Classifiers/Classes Instances/Objects

• A metamodeling facility must give the 
ability to navigate from an instance to its 
metaobject
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Links

• UML 2.0 Infrastructure Specification: 
http://www.omg.org/docs/ptc/03-09-15.pdf

• MOF 2.0 Core Specification: 
http://www.omg.org/docs/ptc/03-10-04.pdf

• MOF 2.0 XMI Specification: 
http://www.omg.org/docs/ptc/03-11-04.pdf

http://www.omg.org/docs/ptc/03-09-15.pdf
http://www.omg.org/docs/ptc/03-10-04.pdf
http://www.omg.org/docs/ptc/03-11-04.pdf


UML
• The Unified Modeling Language

• Upcoming version is 2.0

• OMG standard providing:
– A framework for specifying, constructing and documenting 

system artifacts
– A general-purpose visual modeling language

• Collection of modeling formalisms
– Most frequently used in Object-Oriented systems is the 

Class Diagram

• Specification includes Infrastructure and Superstructure



UML Infrastructure

• Defines basic and more complex modeling constructs that 
underlie the entire UML architecture
– Architectural kernel

• Defined by the InfrastructureLibrary package

• Basic concept:
– MOF (EMOF + CMOF) is built upon the merges of certain 

subpackages defined in InfrastructureLibrary



MOF
• The Metadata Object Facility

• Upcoming version is 2.0

• OMG standard that provides a metadata management 
framework
– Create, destroy, find, manipulate, and change objects and 

relationships between those objects as prescribed by 
metamodels

• Is to be used as the platform-independent metadata 
management facility for OMG’s Model Driven 
Architecture (MDA)
– i.e. build PIMs that are to be transformed to PSMs

• Specification includes the EMOF and the CMOF



EMOF

• The Essential MOF

• “Minimal” subset of the MOF
– Allows simple metamodels to be defined, using the most basic 

class diagram concepts

• Serves as a first stepping stone to model driven tool 
development and tool integration
– E.g. Eclipse’s EMF is based on Ecore



CMOF

• The Complete MOF

• Used to specify metamodels such as the UML

• Adds more complex constructs to the EMOF



XMI

• The XML Metadata Interchange

• OMG standard for serializing MOF-based models to XML 
format

• Allows tools to exchange model information seamlessly
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Goals (1)

• Easier to define and extend models and metamodels
– Unifying MOF2 and UML2 under a common core should 

help accomplish this

• Modular and hierarchical models (component-based 
modeling)
– Model packages can be imported by other models

• Platform-independence of MOF
– Interoperability of different tools using XMI



Goals (2)

• Integrate fundamental capabilities directly inside the 
MOF
– Model Reflection in MOF as an independent service
– Model Identity to improve interoperability
– Model Extension to allow annotation of models

• As a result, we have:
– Orthogonality between the capabilities and the technology

• E.g. Reflection is not specific to CORBA
– A top-down definition of the capabilities

• All MOF-based metamodels will inherently possess all capabilities
– MOF capabilities that can be reused at different meta-

layers
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MOF/UML Relation

• We will look at two aspects of the relation:

1. Roles of UML Infrastructure

2. Differences between MOF and UML



Roles of UML Infrastructure

• Defined by InfrastructureLibrary

• The design of UML Infrastructure into fine-grained 
packages facilitates the definition of the rest of UML

Core:
contains core 
concepts used 
when meta-
modeling (e.g. 
classes)

Profiles:
defines the 
mechanisms that 
are used to 
customize 
metamodels
(e.g. stereotypes)



UML InfrastructureLibrary::Core
PrimitiveTypes:
contains a few 
predefined types that 
are commonly used 
when metamodeling

Abstractions:
mostly contains 
abstract metaclasses 
that are intended to be 
further specialized or 
that are expected to be 
commonly reused by 
many metamodels

Basic:
provides a minimal 
class-based modeling 
language on top of 
which more complex 
languages can be 
built. It is intended for 
reuse by the EMOF

Constructs:
mostly contains 
concrete metaclasses 
that lend themselves 
primarily to object-
oriented modeling. It is 
intended for reuse by 
the CMOF



Example: Core::Basic::Types

Element

TypeTypedElement +type
0..10..1

NamedElement
name : String [0..1]



UML InfrastructureLibrary::Core 
(cont’d)

• A complete metamodel
– Designed for high reusability
– Metamodels at the same metalevel either import or 

specialize its metaclasses

• InfrastructureLibrary::Core is reused by MOF, UML 
Superstructure (Kernel package), and UML Infrastructure

• The goal is to reuse 
the same core 
modeling concepts 
between UML, MOF 
and other emerging 
OMG metamodels



Differences between MOF and UML

• MOF 
– Provides the metadata services
– Defines the meta-metamodeling language to define other 

metamodels like UML
• M3 level: needs to be simpler than UML

– Defines a model interchange standard (XMI)

• UML
– Provides the modeling (and metamodeling) notation

• M2 and M1 levels: model elements have added annotations
– General-purpose modeling language

• Potentially many target application domains



The Big Picture…
• MOF 2.0 was built on reusing 

the Core package by the 
merge, and combine 
mechanisms

• The advantages are 
threefold:

– Simpler rules for modeling 
metadata, since we only need to 
learn a subset of UML class 
diagrams, and no additional 
constructs

– Various technology mapping 
from MOF (e.g. XMI, JMI) now 
apply to a broader range of UML 
models, such as UML Profiles

– Broader tool support for 
metamodeling, since any UML 
modeling tool could be also used 
as a metamodeling tool
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MOF Capabilities

• The MOF specifies three capabilities that add-on to the 
modeling constructs from UML Infrastructure:
– Reflection: Allows discovery and manipulation of 

metaobjects and metadata
– Identifiers: Unambiguously distinguishes objects from each 

other
– Extension: Allows dynamic annotation of model elements 

with additional information

• Each capability is encapsulated in a separate package
– Technology independent

• Any MOF-based metamodels will possess the capabilities
– Can be imported (merged) into other metamodels



Reflection
• The Object Class

– Holds the reflective 
interface

– Rationale: used in the 
production of EMOF, 
which can then be 
merged into CMOF to 
provide reflective 
capabilities to MOF and 
all instances of MOF

• Having both MOF and 
MOF instances be rooted 
in class Object, MOF 
supports any number of 
metalayers

Element

Object

getMetaClass() : Class
container() : Object
equals(element : Element) : Boolean
get(property : Property) : Element
set(property : Property, element : Element)
isSet(property : Property) : Boolean
unset(property : Property)

NamedElement
name : String [0..1]

Package
uri : String

Factory

createFromString(dataType :  DataType, st ring : String) : Element
convertToString(dataType : DataType, element :  Element) :  String
create(metaClass :  Class) : Objec t

+package

0..n

1

0..n

1



Identifiers
Element

Extent

useContainment() :  Boolean
objects() : Reflect iveSequence

URIExtent

contextURI() : String
uri(object : Object) : String
object(string : String) : Object

Property
isReadOnly : Boolean = False
default : String
isCompos ite : Boolean = False
isDerived : Boolean = False
isID : Boolean

Package
uri : String

• Applications:
– Coordinate model updates
– Object communication in user 

interfaces
– In XMI, object identity can simplify 

referencing to external objects 
– In MDA, identity is crucial for model 

(graph) transformations, in order to 
correlate elements from source and 
target models



Extension

• Allows dynamic annotation 
of model elements with 
additional, and perhaps 
unanticipated, information

• Provides a simple 
mechanism to associate a 
collection of name-value 
pairs with model elements

Object

getMetaClass() : Class
container() : Object
equals(element : Element) : Boolean
get(property : Property ) : Element
set(property : Property , element : Element)
isSet(property : Property) : Boolean
unset(property  : Property)

Element

Tag
name : String
value : String

+element
0..n0..n
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EMOF
• Purposes:

– Provides the minimal set of elements required to model 
object-oriented systems

– Allows simple metamodels to be defined, using the most 
basic class diagram concepts

– Gives a fixed modeling base in order to keep the mapping 
from MOF/UML to XML stable

– Provides a straightforward framework for mapping MOF 
models to implementations such as JMI and XMI for 
simple metamodels

– Lowers the barrier to entry for model driven tool 
development and tool integration



EMOF Definition
• EMOF = combine(Basic, Reflection, Identifiers, Extension)

• We would like EMOF to simply extend Core::Basic
– But, Reflection has to introduce Object in the class hierarchy 

between Basic::Element and Basic::NamedElement
– So, we need CMOF’s <<combine>> mechanism

• Described in CMOF
– But, in order for it to be a usable standalone package, it is 

also specified in itself by removing all redefinitions and 
merges

• using the CMOF’s <<combine>> mechanism

• Reason for specifying EMOF as a complete merged model:
– Provide a metamodel that can be used to bootstrap 

metamodel tools rooted in EMOF without requiring an 
implementation of CMOF and package merge semantics



EMOF Definition (cont’d)

NamedElement
name : String [0..1]

MultiplicityElement
isOrdered : Boolean = False
isUnique : Boolean = True
lower : Integer
upper : UnlimitedNatural

UnlimitedNatural
<<primitive>>

Object

getMetaClass() : Class
container() : Object
equals(element : Element) : Boolean
get(property : Property) : Element
set(property : Property, element : Element)
isSet(property : Property) : Boolean
unset(property : Property)

Boolean
<<primitive>>

String
<<primitive>>

Integer
<<primitive>>

DataType

Primitiv eTy pe

Extent

useContainment()
objects()

URIExtent

contextURI() : Stri ng
uri(object : Object) :  String
obj ect(string : Stri ng ) : Object

Ref lectiv eCollection

add(element : Element) : Boolean
addAll(elements : ReflectiveSequence) : Boolean
clear()
remove(element : Element) : Boolean
size() : Integer

Ref lectiv eSequence

add(index : Integer, element : Element)
get(index : Integer) : Element
remove(index : Integer) : Element
set(index : Integer, element : Element) : Element

EnumerationLiteral Enumeration

0..n 0..1
+ownedLiteral

0..n
+enumeration

0..1

Propert y
isReadOnly : Boolean = False
default : String
isComposite : Boolean = False
isDerived : Boolean = False
isID : Boolean

0..1

1

+opposite
0..1

1

Parameter

Class
isAbstract : Boolean = False 0..n

+superClass
0..n

0..n

0..1

+ownedProperty 0..n

+c lass
0..1

TypedElement

Operation 0..n
+ownedParameter

0..n+operation

0..n

0..1

+ownedOperation
0..n

+class
0..1

Type 0..1 +ty pe0..1

0..n

0..n

+raisedException
0..n

0..n

Package
uri : String 0..n0..1

+ownedTy pe
0..n

+package
0..1

0..n

0..1

+nestedPackage
0..n

+nestingPackage
0..1

Factory

createFromString(dataType : DataType, string : String) : Element
convertToString(dataType : DataType, element : Element) : String
create(metaClass : Class) : Object

1

0..n
+package

1

0..n

Element

Tag
name : Stri ng
value : String

0..n
+element

0..n
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CMOF
• Purposes:

– Completely define the UML 2.0
– Define package extending mechanisms

• Package import
– model elements contained in the imported package are made 

visible in the importing package
• Package merge

– classes in the merging package specialize similarly named 
classes in the merged package adding new features

• Package combine
– a new package consisting of the model elements of the combined 

and combining packages is defined

– These mechanisms are used throughout the MOF and 
the UML to define metamodels

• E.g. EMOF = combine(Basic, Reflection, Identifiers, 
Extension)



CMOF Definition

• CMOF = merge(Constructs, EMOF, CMOFExtension, 
CMOFReflection)

• Constructs
– Similar to Basic
– More complex constructs, e.g. support of user-defined 

DataType    with attributes and operations

• CMOFExtension 

• CMOFReflection
– Extension to Factory to conform to the XMI 2.0 

specification

Element
Tag

name : String
value : String

+element +tag
0..n0..n 0..n0..n



CMOF Definition (cont’d)

• Classes Diagram
– Association and Class are both Classifiers

• Novelty: Associations can be generalized
– Classes own Properties and Operations
– Associations relate Properties of Classes

Classifier
isAbstract : Boolean = False

0..n

+general

0..n

Class

0..n

+superClass

0..n

Operat ion
isQuery : Boolean = False

0. .1
0..n

+c lass0. .1

+ownedOperation
0..n

Property
default : String
isComposite : Boolean = False
isDerived : Boolean = False
isID : Boolean
isDerivedUnion : Boolean = False

0..1

0..n

+c lass

0..1

+ownedAt tribute0..n

0..1 0..n
+classifier
0..1

+attribute
0..n

Association
isDerived : Boolean = False

0..1

2..n

+association
0..1

+memberEnd
2..n

+ownedEnd

+owningAssociation
0..1

0..n

0..1

0..n



CMOF Definition (cont’d)

• Constraints Diagram
– Constraints apply to Elements in a certain context 

(Namespace)
– The constraint specification is a ValueSpecification

• A ValueSpecification identifies values in a model
• Can be an Expression (e.g. a + b = 3)
• Can be an OpaqueExpression (e.g. an OCL statement)

PackageableElement

Namespace

+importedMember
0..n0..n

Element
0..n

0..1
0..n

+ownedElement

0..1

+owner

ValueSpecification

Constraint
0..1

+context
0..1

0..1 0..n+namespace 0..1
+ownedRule

0..n

0..n
+constrainedElement

0..n

+specification

0..1

1

0..1

1



CMOF Definition (cont’d)

• Packages Diagram
– PackageMerge is a DirectionalRelationship between two 

Packages
• “extend” Package Merge
• “define” Package Combine

PackageableElementNamespace

Type

PackageMergeKind
extend
define

<<enumeration>>

Package
uri : String

0..n

0..1

+nestedPackage
0..n

+nestingPackage
0..1

0..1

0..n

+owningPackage
0..1

+ownedMember
0..n

0..1

0..n

+package
0..1

+ownedType
0..n

PackageMerge
mergeType : PackageMergeKind

1

0..n

+mergingPackage
1

+packageMerge
0..n

+mergedPackage
11

DirectedRelationship



Package Merge
• Set of transformations where the elements of the merged 

package are expanded in the merging package

• General idea:
– Model elements match by name
– Matching elements are merged together using inheritance 

and redefinitions
– Done until there are no more duplicate elements

• At the end of the transformations, the package merge 
relationship is transformed into a package import 
relationship, with the same source and target packages
– The relationship is maintained



Package Merge Example



Package Combine
• Set of transformations where the elements of the 

combined package are “deeply” copied in the combining 
package

• General idea:
– Packages, Classes, Properties match by name
– Associations match either by name (if any) or by 

memberEnds
– Operations match by name and parameters
– New model elements are born from the combination of 

matching elements from the combined and combining 
packages

• At the end of the transformations, the package 
dependency is removed from the model



Package Combine (cont’d)
• Deep copy:

– Copy non-matching elements to the combining package

– Matching packages: combine their classes and 
associations

– Matching classes: combine their properties and ignore 
matching operations

– Matching properties: find the most specific type and 
multiplicity

• Most specific type: the “closest” supertype of both properties, in the 
combining package

• Most specific multiplicity: largest lower bound and smallest lower 
bound

– Matching association: combine the related classes



MOF Recap

• The MOF (EMOF + CMOF) is 
described using UML Infrastructure 
(+ OCL and natural language)

• The EMOF is described using 
CMOF

• The EMOF is also completely 
described in EMOF, using CMOF’s 
combine mechanism

• The CMOF is described using 
CMOF itself

• The UML2 uses CMOF in its 
definition



Topics Overview
• Introduction

– Overview of Metamodeling
– Key Acronyms and Standards

• MOF Details
– Goals
– MOF/UML Relation
– Capabilities
– EMOF
– CMOF
– Abstract Semantics

• XMI Details
– Motivation and Goals
– XMI Model
– Schema and Document Production from MOF

• Conclusion



Abstract Semantics

• Instances Diagram
– InstanceSpecification represents an instance in a modeled 

system
• References a Classifier its “metaobject”
• An InstanceValue specifies the value modeled by an InstanceSpecification
• Has Slots, which specify the value or values for its defining feature, which 

must be a StructuralFeature of the classifier referenced by the 
InstanceSpecification owning the Slot

InstanceValue

NamedElement

Classifier InstanceSpecification

1 +instance1
1..n

+classifier
1..n

ValueSpecification0..1

0..1

0..1 +specification
0..1

Slot

1

0..n

+owningInstance1

+slot0..n

0..1

0..n

0..1

+value 0..n

StructuralFeature
1

+definingFeature
1
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Motivation and Goals
• Define an industry standard for MOF/UML model 

serialization

• Allow tools to
– Exchange model information seamlessly
– Include tool-specific information without affecting the model 

representation
– Transmit incomplete metadata, and metadata deltas

• Define production rules for XML Schemas and Documents
– Schema: validates an XML document, i.e. the metamodel
– Document: contains actual model information, i.e. the model
– Backward rules are also defined, but not discussed here!

• Difference from MOF 1.4 XMI:
– Use of XML Schemas instead of DTDs



XMI Definition
• Two important aspects come into play in the definition of 

XMI standard:
– The XMI Model
– The Production rules

• XMI Model = Instance of MOF
– Used to describe XMI-specific information

• i.e. version, documentation, extension, differences
– XMI can be treated like any other MOF metadata

• Production rules specify as formally as possible the 
manner in which MOF-based models should be 
transformed into both XML Schemas and Documents
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XMI Model
XMI

version : String
documentation : Documentation
difference : Difference
extens ion : Extension

Documentation
contact : String
exporter :  String
exporterVersion :  String
exporterID : String
longDescription : String
shortDescript ion : String
notice : String
owner : String

Extension
extender : String
extenderID : String

DeleteAdd
position : Integer

Replace
position : Integer

Difference
0..n

0..1

+difference
0..n

+container
0..1

Object
0..n

+addition
0..n

0..n

+replacement

0..n
0..n+target 0..n



XMI Attributes
• XMI defines a set of fixed XML attributes used throughout the production 

of XMI schemas

• Consistent attributes consistent architectural structure consistent 
object identity and linking across all assets

• Example: Element Identity Attribute & Linking Attributes

<xsd:attribute name="id" type="xsd:ID" use="optional"/>
<xsd:attributeGroup name="IdentityAttribs">

<xsd:attribute name="label" type="xsd:string" use="optional" form="qualified"/>
<xsd:attribute name="uuid" type="xsd:string" use="optional" form="qualified"/>

</xsd:attributeGroup>

<xsd:attributeGroup name="LinkAttribs">
<xsd:attribute name="href" type="xsd:string" use="optional"/>
<xsd:attribute name="idref" type="xsd:IDREF" use="optional“ form="qualified"/>

</xsd:attributeGroup>
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Schema Production from MOF

• Set of rules that show
– What declarations must be contained in any well-formed 

XMI Schema (content)
– How the information is structured (structure)

• Mapping between any type of MOF model element and a 
schema declaration
– E.g. a class maps to a complexType declaration
– E.g. multiplicities map to minOccurs and maxOccurs 

indicators

• Formalized using a textual grammar
– Extended BNF (EBNF)



EBNF Snippet
…
4.b ClassContents ::= 4d:ClassAttributes

4e:ClassReferences
4f:ClassCompositions
4c:Extension

4c. Extension ::= ("<xsd:element ref=’xmi:extension’/>")*

4d. ClassAttributes ::= ("<xsd:element name=’" //Name of Attribute// "’“ ("nillable=’true’")?
( 4m:MinOccursAttrib )? ( 4n:MaxOccursAttrib )?
(("type=’" //Name of type// "’/>") | ("type='xmi:Any'/>")) )*

4e. ClassReferences ::= ( "<xsd:element name=’" //Name of Reference// "’"
( 4m:MinOccursAttrib )? ( 4n:MaxOccursAttrib )?
(("type=’" 4a:ClassTypeName "’/>") | ("type='xmi:Any'/>")) )*

4f. ClassCompositions ::= ( "<xsd:element name=’" //Name of Reference// "’"
( 4m:MinOccursAttrib )? ( 4n:MaxOccursAttrib )?
(("type=’" 4a:ClassTypeName "’/>") | ("type='xmi:Any'/>")) )*

…
4m. MinOccursAttrib ::= "minOccurs=’" // Minimum // "’"
4n. MaxOccursAttrib ::= "maxOccurs=’" // Maximum // "’“
…



Overview of Model Representation

GIS Model Example
(from MOF XMI spec)



Document Production from MOF
• Similar to Schema production rules

– Also in EBNF
– But less fixed declarations (i.e. namespaces)

• Defines a serialization model:



EBNF Snippet
2:XMIElement ::= 2a:XMIObjectElement | 2b:XMIValueElement | 2c:XMIReferenceElement

2a:XMIObjectElement ::= ( "<" 2k:QName 2d:XMIAttributes "/>" ) |
( "<" 2k:QName 2d:XMIAttributes ">" (2:XMIElement)* "</" 2k:QName ">" )

2b:XMIValueElement ::= ( "<" xmiName ">" value "</" xmiName ">" ) | ( "<" xmiName "nil='true'/>" )

2c:XMIReferenceElement::= "<" xmiName (2g:TypeAttrib)? 2l:LinkAttribs "/>"

2d:XMIAttributes ::= (1c:StartAttribs)? (2e:IdentityAttribs)? (2g:TypeAttrib)? (2hFeatureAttrib)*

2e:IdentityAttribs ::= ( 2f:IdAttribName "=’" id "’")? ( xmiPrefix "label=’" label "’" )? ( xmiPrefix "uuid=’" uuid "’" )?

2f:IdAttribName ::= xmiPrefix "id" | xmiIdAttribName

2g:TypeAttrib ::= (1b:XMINamespace | 1g:Namespace) "type=’" 2k:QName "’"

2h:FeatureAttrib ::= 2i:XMIValueAttribute | 2j:XMIReferenceAttribute

2i:XMIValueAttribute ::= xmiName "=’" value "’"

2j:XMIReferenceAttribute ::= xmiName "=’" (refId | 2n:URIref)+ "’“

2l:LinkAttribs ::= 1b:XMINamespace "idref=’" refId "’“ | 2m:Link

2m:Link ::= "href='" 2n:URIref "'"



Document Production Example

• Composite property serialized as XML elements, the 
opposite property is not serialized.



Conclusion
• UML is a general-purpose modeling notation with a 

plethora of application domains

• UML InfrastructureLibrary defines small subpackages 
that can be reused by UML and MOF (EMOF + CMOF)

• MOF is a metamodeling framework that provides 
reflection, identity, and extension services

• EMOF is a minimal subset of MOF used to define very 
simple metamodels

• CMOF is the complete meta-metamodel used to define 
UML2 completely

• XMI is the OMG standard for serializing MOF-based 
models
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